3.599 \(\int \frac{(d x)^m}{a+b x^n+c x^{2 n}} \, dx\)

Optimal. Leaf size=175 \[ \frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (b-\sqrt{b^2-4 a c}\right )}-\frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}+b\right )} \]

[Out]

(2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])])/(Sqrt[b
^2 - 4*a*c]*(b - Sqrt[b^2 - 4*a*c])*d*(1 + m)) - (2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n
)/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 - 4*a*c]*(b + Sqrt[b^2 - 4*a*c])*d*(1 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.185346, antiderivative size = 175, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {1383, 364} \[ \frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (b-\sqrt{b^2-4 a c}\right )}-\frac{2 c (d x)^{m+1} \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{b^2-4 a c} \left (\sqrt{b^2-4 a c}+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m/(a + b*x^n + c*x^(2*n)),x]

[Out]

(2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])])/(Sqrt[b
^2 - 4*a*c]*(b - Sqrt[b^2 - 4*a*c])*d*(1 + m)) - (2*c*(d*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n
)/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[b^2 - 4*a*c]*(b + Sqrt[b^2 - 4*a*c])*d*(1 + m))

Rule 1383

Int[((d_.)*(x_))^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Dist[(2*c)/q, Int[(d*x)^m/(b - q + 2*c*x^n), x], x] - Dist[(2*c)/q, Int[(d*x)^m/(b + q + 2*c*x^n), x], x]]
/; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(d x)^m}{a+b x^n+c x^{2 n}} \, dx &=\frac{(2 c) \int \frac{(d x)^m}{b-\sqrt{b^2-4 a c}+2 c x^n} \, dx}{\sqrt{b^2-4 a c}}-\frac{(2 c) \int \frac{(d x)^m}{b+\sqrt{b^2-4 a c}+2 c x^n} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{2 c (d x)^{1+m} \, _2F_1\left (1,\frac{1+m}{n};\frac{1+m+n}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c} \left (b-\sqrt{b^2-4 a c}\right ) d (1+m)}-\frac{2 c (d x)^{1+m} \, _2F_1\left (1,\frac{1+m}{n};\frac{1+m+n}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c} \left (b+\sqrt{b^2-4 a c}\right ) d (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.148448, size = 143, normalized size = 0.82 \[ \frac{x (d x)^m \left (\left (\sqrt{b^2-4 a c}+b\right ) \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )+\left (\sqrt{b^2-4 a c}-b\right ) \, _2F_1\left (1,\frac{m+1}{n};\frac{m+n+1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )\right )}{2 a (m+1) \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m/(a + b*x^n + c*x^(2*n)),x]

[Out]

(x*(d*x)^m*((b + Sqrt[b^2 - 4*a*c])*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, (2*c*x^n)/(-b + Sqrt[b^2 -
4*a*c])] + (-b + Sqrt[b^2 - 4*a*c])*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, (-2*c*x^n)/(b + Sqrt[b^2 -
4*a*c])]))/(2*a*Sqrt[b^2 - 4*a*c]*(1 + m))

________________________________________________________________________________________

Maple [F]  time = 0.029, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( dx \right ) ^{m}}{a+b{x}^{n}+c{x}^{2\,n}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m/(a+b*x^n+c*x^(2*n)),x)

[Out]

int((d*x)^m/(a+b*x^n+c*x^(2*n)),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{c x^{2 \, n} + b x^{n} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(a+b*x^n+c*x^(2*n)),x, algorithm="maxima")

[Out]

integrate((d*x)^m/(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\left (d x\right )^{m}}{c x^{2 \, n} + b x^{n} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(a+b*x^n+c*x^(2*n)),x, algorithm="fricas")

[Out]

integral((d*x)^m/(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{a + b x^{n} + c x^{2 n}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m/(a+b*x**n+c*x**(2*n)),x)

[Out]

Integral((d*x)**m/(a + b*x**n + c*x**(2*n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{c x^{2 \, n} + b x^{n} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(a+b*x^n+c*x^(2*n)),x, algorithm="giac")

[Out]

integrate((d*x)^m/(c*x^(2*n) + b*x^n + a), x)